0

Full Content is available to subscribers

Subscribe/Learn More  >

Improved Hierarchical Modelling for Aerodynamically Coupled Systems

[+] Author Affiliations
Rob Watson, Jiahuan Cui, Yunfei Ma, James Tyacke, Nagabhushana Rao Vadlamani, Mohammed F. Alam, Yushuang Dai, Paul G. Tucker, Teng Cao

University of Cambridge, Cambridge, UK

Paul Hield, Mark Wilson, Kevin Menzies, Christopher Sheaf

Rolls-Royce plc, Bristol, UK

Paper No. GT2017-65223, pp. V02BT41A056; 12 pages
doi:10.1115/GT2017-65223
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5079-4
  • Copyright © 2017 by Rolls-Royce plc

abstract

Strong aerodynamic coupling can make the high fidelity simulation of a number of critical aero-engine components prohibitively expensive — particularly within the timeframes of industrial design cycles. This paper develops a body force based hierarchy of approaches to modelling the effects of blade rows. These are envisaged as allowing the computationally expensive parts of coupled systems to be resolved much more cheaply, rendering the cost of the overall simulation as more manageable. Simulation of the coupling that exists between the flow around an aero-engine intake and its fan is particularly emphasised, as this is becoming stronger and more performance critical with the modern trends towards the reduction of the relative diffuser length.

The use of the viscous smeared geometry level of fidelity is initially shown to be an effective model over a number of cases — a simple compressor blade row, a modern high bypass fan, and the Darmstadt rotor. After this, it is shown working as part of a coupled system in an intake experiencing cross-flow. Higher fidelity geometry representations are then considered, which mimic the effect of struts. Finally, a mix of various fidelity geometry representations and turbulence modelling approaches is shown to bring otherwise hugely expensive calculations within the realm of practical computation, in the form of a full fan-to-flap calculation.

Copyright © 2017 by Rolls-Royce plc
Topics: Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In