Full Content is available to subscribers

Subscribe/Learn More  >

A Two-Dimensional Analytical Method for Turbine Blade Cooling Design

[+] Author Affiliations
Chen Li, Jian-jun Liu, Bai-tao An, Zhi-qiang Yu

Chinese Academy of Sciences, Beijing, China

Paper No. GT2017-63856, pp. V02BT41A023; 13 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5079-4
  • Copyright © 2017 by ASME


Turbine blade cooling design involves many complex fluid-thermal coupling issues. Using complete 3D CFD and FEA method would increase the cost of computing; on the other hand, the simplified 1D analytical method would lose too much important blade geometric information when employed in preliminary cooling design. In order to shorten design period and improve the design efficiency, the current 2D analytical method has been developed from a conceptual design that stacking a series of 2D radial sections to shape a quasi-3D blade model attached with the internal fluid flow network. Each of those 2D radial sections could maximally retain the actual blade profile, thus making it more authentic for accomplishing the numerical calculations of turbine cascade flow and heat transfer. For the gas side, methods for calculating external heat transfer coefficients have been investigated, and a simple method for considering the effect of thermal barrier coating on 2D conduction model is proposed. For internal cooling channels, a general calculation method of compressible pipe flow under rotating condition has been derived for fast solving coolant mass flow rates and internal heat transfer coefficients supported by empirical correlations of Darcy resistance coefficient and Nusselt number. Those work are significant to achieve the parametric cooling design by means of modifying and controlling geometric parameters and boundary conditions. Consequently, a real turbine blade case by applying the current 2D analytical method to obtain a quasi-3D blade temperature distribution is presented, demonstrating that this 2D analytical method is effective for turbine cooling design.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In