0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards High-Order Large Eddy Simulation of Aero-Thermal Flows for Turbomachinery Applications

[+] Author Affiliations
R. Bhaskaran, Umesh Paliath

GE Global Research, Niskayuna, NY

Feilin Jia, Z. J. Wang

University of Kansas, Lawrence, KS

Gregory M. Laskowski

GE Aviation, Lynn, MA

Paper No. GT2017-63358, pp. V02BT41A011; 12 pages
doi:10.1115/GT2017-63358
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5079-4
  • Copyright © 2017 by ASME

abstract

The solution accuracy and computational efficiency of high order Large Eddy Simulation (LES) solvers are evaluated on two benchmark open literature blade cascade problems. The first problem concerns wake development in the T106A low pressure turbine cascade [1]. The second problem examines the effect of free-stream turbulence on heat transfer from the VKI first stage high pressure turbine vane [2]. The calculations are performed with two independently developed high order LES solvers using completely different numerical algorithms. The first solver FDL3Di [3] was originally developed at the Airforce Research Laboratory (AFRL) and employs structured overset grids. It uses a sixth order compact finite difference scheme in space along with an implicit Beam-Warming scheme for time marching. The second solver, hpMusic, is developed at the University of Kansas [4]. This is a variable order (up to sixth order) unstructured grid solver employing a discontinuous formulation known as flux reconstruction (FR) / correction procedure via reconstruction (CPR) [5]. The computational grids used are independently tuned for each application. The solvers are benchmarked against experimental data for wake development and blade heat transfer coefficient. Further physical insights in to the test cases are also obtained, filling gaps in experimental results, especially for the VKI problem.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In