0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of the Flow Past an Axial Turbine Stator Casing and Perspectives for its Management

[+] Author Affiliations
Hakim T. K. Kadhim, Aldo Rona, Hayder M. B. Obaida, J. Paul Gostelow

University of Leicester, Leicester, UK

Paper No. GT2017-63055, pp. V02BT41A002; 12 pages
doi:10.1115/GT2017-63055
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5079-4
  • Copyright © 2017 by ASME

abstract

The interaction of secondary flow with the main passage flow results in entropy generation; this accounts for considerable losses in turbomachines. Low aspect ratio blades in an axial turbine lead to a high degree of secondary flow losses. A particular interest is the reduction in secondary flow strength at the turbine casing, which adversely affects the turbine performance. This paper presents a selective review of effective techniques for improving the performance of axial turbines by turbine end wall modifications. This encompasses the use of axisymmetric and non-axisymmetric end wall contouring and the use of fences. Specific attention is given to non-axisymmetric end walls and to their effect on secondary flow losses. A baseline three-dimensional steady RANS k-ω SST model, with axisymmetric walls, is validated against experimental measurements from the Institute of Jet Propulsion and Turbomachinery at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany, with comparative solutions generated by ANSYS Fluent and OpenFOAM. The predicted performance of the stator passage with an axisymmetric casing is compared with that from using a contoured casing with a groove designed using the Beta distribution function for guiding the groove shape. The prediction of a reduced total pressure loss coefficient with the application of the contoured casing supports the groove design approach based on the natural path of the secondary flow features. This work also provided an automated workflow process, linking surface definition in MATLAB, meshing in ICEM CFD, and flow solving and post-processing OpenFOAM. This has generated a casing contouring design tool with a good portability to industry, to design and optimize new turbine blade passages.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In