0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (LSTR)

[+] Author Affiliations
Jonathan Hilgert, Martin Bruschewski, Holger Werschnik, Heinz-Peter Schiffer

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. GT2017-64504, pp. V02AT40A028; 13 pages
doi:10.1115/GT2017-64504
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5078-7
  • Copyright © 2017 by ASME

abstract

In order to fully understand the physical behavior of lean burn combustors and its influence on high pressure turbine stages in modern jet engines, the use of Computational Fluid Dynamics (CFD) promises to be a valuable addition to experimental techniques. The numerical investigations of this paper are based on the Large Scale Turbine Rig (LSTR) at Technische Universität Darmstadt, Germany which has been set up to explore the aerothermal combustor turbine interaction. The underlying numerical grids of the simulations take account of the complex cooling design to the fullest extent, considering coolant cavities, cooling holes and vane trailing edge slots within the meshing process. In addition to the k-ω-SST turbulence model, Scale-Adaptive Simulation (SAS) is applied for a computational domain comprising swirl generator and nozzle guide vanes in order to overcome the shortcomings of eddy viscosity turbulence models with regard to streamline curvature. The numerical results are compared with Five Hole Probe measurements at different streamwise locations showing good agreement and allowing for a more detailed examination of the complex flow physics caused by the interaction of turbine flow with lean-burn combustion and advanced film-cooling concepts. Moreover, numerically predicted Nu-contours on the hub end wall of the nozzle guide vane are validated by means of Infrared Thermography measurements.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In