0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Fidelity Modelling of a Fully-Featured HP Turbine Stage

[+] Author Affiliations
Giorgio Occhioni, Shahrokh Shahpar, Haidong Li

Rolls-Royce plc, Derby, UK

Paper No. GT2017-64478, pp. V02AT40A027; 12 pages
doi:10.1115/GT2017-64478
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5078-7
  • Copyright © 2017 by Rolls-Royce plc

abstract

An improvement in overall efficiency and power output for gas turbine engines can be obtained by increasing the combustor exit temperature, but the thermal management of metal parts exposed to hot gases is challenging. Discrete film cooling, combined with internal convective cooling is the current state-of-the-art available to aerothermal designers of these components. To simplify the simulation problem in the aerodynamic design phase, it is common practice to replace the cooling holes with source strips applied to the blade. This could lead to inaccuracies in high pressure turbine performance prediction. This study has been carried out on a fully-featured high pressure turbine stage using high-fidelity simulations. The film cooling holes on the nozzle guide vane and on the rotor are initially modelled using a strip model approach. Then, to increase the model fidelity, the strips on the suction side of the rotor are replaced with discrete fan shaped film cooling holes. A rigid body rotation is also applied to the nozzle guide vane to vary the stage capacity and reaction. The effects of the mesh topology & resolution are also taken into account. The results obtained with these two approaches are then compared, giving the designers a better understanding on film cooling modelling and relationship between capacity, reaction and performance. The accurate prediction of the complex interaction between cavity inflows and the main-flow, still represent a challenge for the state of the art RANS solvers. Hence, an unsteady phase-lag approach has been used to overcome the RANS limitations. A validation of the unsteady solutions has been carried out with respect to experimental data.

Copyright © 2017 by Rolls-Royce plc
Topics: Modeling , Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In