0

Full Content is available to subscribers

Subscribe/Learn More  >

InterTurb: High-Pressure Turbine Rig for the Investigation of Combustor-Turbine Interaction

[+] Author Affiliations
T. Wolf, K. Lehmann, L. Willer

Rolls-Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany

A. Pahs, M. Rößling, L. Dorn

German Aerospace Center (DLR), Göttingen, Germany

Paper No. GT2017-64153, pp. V02AT40A020; 8 pages
doi:10.1115/GT2017-64153
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5078-7
  • Copyright © 2017 by Rolls-Royce Deutschland Ltd & Co KG

abstract

This paper introduces a new 2-stage high-pressure turbine rig for aerodynamic investigations. It is operated by DLR Göttingen (Germany) and installed in DLR’s new testing facility NG-Turb. The rig’s geometrical size as well as the non-dimensional parameters are comparable to a modern engine in the small to medium thrust range. The turbine rig closely resembles engine hardware and features all relevant blade and vane cooling as well as secondary air-system flows. The effect of variations of each individual flow and different tip clearances on overall turbine efficiency will be studied. While the first part of the testing program will be based on uniform inlet conditions the second part will be run with a combustor simulator, which is based on electrical heaters and delivers a flow field similar to a rich-burn combustor. In order to find the optimum relative position for maximum turbine efficiency the combustor simulator can be rotated relative to the HPT inlet (clocking). For the same reasons the stators can also be clocked.

The paper gives a brief overview of the testing facility and from there on focuses on the HPT rig features such as aerodynamic design, cooling and sealing flows. The aerodynamic optimisation of the stator vanes and shroudless rotor blades will be outlined. Further topics are the aerodynamic design of the combustor simulator, a comparison with engine combustors as well as the implementation in the rig. The paper also describes the rig instrumentation in the stationary and rotating system which most importantly focuses on measurements of efficiency and capturing of traverse data. The topic of blade and vane manufacturing via direct metal laser sintering will be briefly covered. The discussion of test results and comparison with numerical simulations will be the subject of a follow-up paper.

Copyright © 2017 by Rolls-Royce Deutschland Ltd & Co KG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In