0

Full Content is available to subscribers

Subscribe/Learn More  >

The Design of a Large Diameter Axial Flow Fan for Air-Cooled Heat Exchanger Applications

[+] Author Affiliations
Michael B. Wilkinson, Johan van der Spuy, Theodor W. von Backström

Stellenbosch University, Stellenbosch, South Africa

Paper No. GT2017-63331, pp. V001T09A002; 15 pages
doi:10.1115/GT2017-63331
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5077-0
  • Copyright © 2017 by ASME

abstract

An axial flow fan design methodology is developed to design large diameter, low pressure rise, rotor-only fans for large air-cooled heat exchangers. The procedure aims to design highly efficient axial flow fans that perform well when subjected to off design conditions commonly encountered in air-cooled heat exchangers. The procedure makes use of several optimisation steps in order to achieve this. These steps include optimising the hub-tip ratio, vortex distribution, blading and aerofoil camber distributions in order to attain maximum total-to-static efficiency at the design point.

In order to validate the design procedure a 24 ft, 8 bladed axial flow fan is designed to the specifications required for an air-cooled heat exchanger for a concentrated solar power (CSP) plant. The designed fan is numerically evaluated using both a modified version of the actuator disk model and a three dimensional periodic fan blade model. The results of these CFD simulations are used to evaluate the design procedure by comparing the fan performance characteristic data to the design specification and values calculated by the design code. The flow field directly down stream of the fan is also analysed in order to evaluate how closely the numerically predicted flow field matches the designed flow field, as well as determine whether the assumptions made in the design procedure are reasonable.

The fan is found to meet the required pressure rise, however the fan total-to-static efficiency is found to be lower than estimated during the design process. The actuator disk model is found to under estimate the power consumption of the fan, however the actuator disk model does provide a reasonable estimate of the exit flow conditions as well as the total-to-static pressure characteristic of the fan.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In