0

Full Content is available to subscribers

Subscribe/Learn More  >

Small Aircraft Turbine Noise From Combustion of Synthetic Kerosene Fuels

[+] Author Affiliations
Valentin Soloiu, Aliyah Knowles, Jose Moncada, Emerald Simons, Martin Muinos, Huong Kim Ngo

Georgia Southern University, Statesboro, GA

Paper No. GT2017-65044, pp. V001T01A030; 7 pages
doi:10.1115/GT2017-65044
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5077-0
  • Copyright © 2017 by ASME

abstract

In this paper the use of alternative fuels — synthetic kerosene based — were investigated in a small aircraft gas turbine engine to determine their sound and vibrations signature at Georgia Southern University’s Aerospace Engine Laboratory. Three types of fuels were used: a natural gas, a coal derived synthetic kerosene and Jet-A as a reference fuel. The alternative fuels are Fischer-Tropsch process fuels. Synthetic fuels are attractive in the aviation industry because of their potential for reducing energy dependence and the growing need for higher efficiencies, while reducing emissions.

The research SR-30 gas turbine was used to evaluate combustion noise from the selected fuels. The turbine can operate at a maximum speed of 80,000 rpm, produce a maximum thrust of 40 lbf, has a pressure ratio of 3.4 to 1, and a specific fuel consumption of 1.22 lbfuel/thrust per hour. The measurement transducers were state of the art Brüel & Kjaer ¼ inch microphone and a triaxial accelerometer which were interfaced with the analysis software, Brüel & Kjaer Pulse 21. Data was taken at 70,000 rpm for a time span of five minutes at stabilized conditions. One-third octave analysis indicated highest sound difference between the fuels at 400 Hz, and a more pure sound level was obtained. The difference for Jet A was as much as 6 dBA higher for exhaust measurement at 400 Hz, and for FT-NG the exhaust had a higher decibel reading from the exhaust side by as much as 4.4 dBA at the 400 Hz frequency, and FT-CG had as much as 7.3 dBA difference at 315 Hz. The sound from the combustion of these fuels produced the differences of sound when the positions of the microphones changed. However, with this new introduction of sound measurement locations and angles, the combustion differences are still distinct and show a more in depth view of the sound quality that is being received by the microphone.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In