0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of a Sliding Mode Parameter Limit Regulating System for Turbo Fan Engine

[+] Author Affiliations
Zhang Yuan-suo, Tao Jin-wei, Mai Xin-chen

AECC Commercial Aircraft Engine Co., Ltd, Shanghai, China

Paper No. GT2017-64510, pp. V001T01A025; 13 pages
doi:10.1115/GT2017-64510
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5077-0
  • Copyright © 2017 by ASME

abstract

In this paper, a sliding mode (SM) parameter limit regulating system is designed to regulate the fuel flow rate to the turbofan engine. Firstly, a linear engine model is identified using a general engine dynamic nonlinear model. Then based on the one Lyapunov function, one SM parameter limit regulating system is designed mainly including regulators design, selector design and integrator design. After that the feedback gains and coefficient sets (switching gain and boundary thickness for every regulator) of the SM regulators are optimized and chosen. Finally, the global asymptotical stability of the regulating system is demonstrated. The simulation results also show that SM parameter limit regulator functions all the time during engine transient state control process, and the design SM parameter limit regulating system ensures that the target steady speed state or limit steady state can be attained in finite time interval without exceeding critical parameter limits.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In