Full Content is available to subscribers

Subscribe/Learn More  >

Turboelectric Distributed Propulsion System As a Future Replacement for Turbofan Engines

[+] Author Affiliations
Borys Łukasik

Institute of Aviation, Warsaw, Poland

Paper No. GT2017-63834, pp. V001T01A017; 8 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5077-0
  • Copyright © 2017 by ASME


The main purpose of this paper is to discuss the possibility of standard turbofan engine replacement by the turboelectric distributed propulsion system, in future commercial aviation. Paper describes how the distributed propulsion allows to reach significantly greater propulsive efficiency than state-of-the-art high bypass turbofan engines, and presents turboelectric system as the only practical method of distributed propulsion implementation. However, since extra weight of the electric components that would be added can overcome the high propulsive efficiency benefit, a detailed analysis is needed to verify the feasibility of such system. This article shows results of such analysis that was conducted for 90 PAX class regional jet. Thermodynamic cycle calculations, performed for both, turbofan engine and turboelectric distributed propulsion are presented. They prove that distributed propulsion is able to provide great reduction in fuel consumption of uninstalled propulsion system, while performed mission analysis depicts the penalty of extra mass of electric appliances, showing actual profits that are achievable. On this example, advantages and disadvantages of the turboelectric distributed propulsion system in comparison with modern turbofan engines are discuss, taking into account the potential technological development of turbofan engine and additional non-propulsive benefits that turboelectric system is able to provide. Finally, this document also presents mass estimations for different scenarios of electric appliances evolution, which highlight the technology levels that need to be achieved before the system can be introduced in commercial service.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In