0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Method of Needle Deflection and Prostate Movement Using the Anatomically Accurate Prostate Simulator and the Electromagnetic Tracking System

[+] Author Affiliations
Dian-Ru Li, Jih-Kai Yeh, Wei-Chen Lin, Albert Shih

University of Michigan, Ann Arbor, MI

Jeffrey S. Montgomery

University of Michigan Health System, Ann Arbor, MI

Paper No. MSEC2017-3000, pp. V004T05A010; 8 pages
doi:10.1115/MSEC2017-3000
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 4: Bio and Sustainable Manufacturing
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5075-6
  • Copyright © 2017 by ASME

abstract

This study develops an experimental method to measure the needle deflection and prostate movement using an anatomically accurate prostate simulator with the electromagnetic tracking (EMT) system. Accurate needle insertion is crucial for prostate biopsy to acquire the tissue samples from cancer sites identified by magnetic resonance imaging. False negatives or inability to diagnose are the clinical challenges in the biopsy procedure. The main cause is that the needle tip missed the targeted cancer sites due to needle deflection and prostate movement. An anatomically accurate prostate simulator was developed to quantitatively and experimentally measure the deviation of needle tip from the ideal path and the movement of a target point in the prostate. The EMT system was utilized to simultaneously track the needle tip and target point positions in 3D space. Results show that the maximal needle deflection occurred at the first 60-mm insertion with 6.7 and 0.7 mm in and perpendicular to the needle insertion plane, respectively. The corresponding target point movements were 6.5 mm and 2.4 mm in and perpendicular to the needle insertion plane, respectively. Differences between multiple insertions through the same path have also been quantified. This method can be utilized to study clinical prostate biopsy techniques, evaluate the accuracy of needle devices, and train clinicians for accurate prostate needle biopsy.

Copyright © 2017 by ASME
Topics: Deflection , needles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In