0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of Soft Grippers for Hand Rehabilitation

[+] Author Affiliations
Hongying Zhang, Jerry Ying Hsi Fuh, A. Senthil Kumar

National University of Singapore, Singapore, Singapore

Yiqiang Wang, Michael Yu Wang

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Paper No. MSEC2017-2814, pp. V004T05A003; 10 pages
doi:10.1115/MSEC2017-2814
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 4: Bio and Sustainable Manufacturing
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5075-6
  • Copyright © 2017 by ASME

abstract

The goal of this paper is to develop a design methodology to create customized biomedical devices which can be fabricated through 3D printing technology. Due to the increasing demands of hand rehabilitation and prosthetic accessories, we focus on designing a pneumatically actuated soft gripper applicable on these issues. The gripper is composed of 3D printable soft material, which results in a safe interaction with human bodies due to inherently low modulus. Each gripper finger is designed to mimic the real-world movement of a human finger, where the complex physical finger locomotion is modelled as the continuous bending deformation of the soft gripper finger. Working as a compliant mechanism, the design process is performed to maximize the possible bending deformation. The topology optimization method is adopted to design the best performance gripper finger. The optimized gripper shows high consistence with human fingers because of the pseudo-joints. Sequentially, the designed gripper is directly fabricated through 3D printing technology and characterized with free travel trajectory tracking experiments.

Copyright © 2017 by ASME
Topics: Design , Grippers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In