Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Absolute Distance Meter Shift Inside a Laser Tracker

[+] Author Affiliations
He Li, Robert G. Landers, Douglas A. Bristow

Missouri University of Science and Technology, Rolla, MO

Paper No. MSEC2017-3028, pp. V003T04A071; 5 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME


In the measurement of machine tool and robot geometric errors, one of the most extensively used instruments is the Laser Tracker (LT). Errors in the LT measurements will decrease the effectiveness of the error modeling and compensation methods that utilize these measurements. When the LT’s Absolute Distance Meter (ADM) is used without frequent referencing to a home position, large and long-term shifts occur. The ADM shift directly introduces errors in the radial component of every measurement in spherical coordinates, which will result in measurement errors in the Cartesian coordinates. Although the ADM shift is addressed in newer LT designs using internal referencing hardware, this paper presents a pragmatic and efficient software solution to ADM shift for LTs in which the internal referencing hardware is not embedded. The LT was measured for 22 hr in a temperature-constant room to examine the ADM shift effects on measurements. An ADM shift model was then proposed by assuming that the ADM shift equally affects radial components of all measurements wherever the target is, as long as it is within the measurement range. Another experiment was then performed to test the validity of the proposed model. After the model was identified and errors were corrected, the maximum temporal variation in the radial distance measurement is reduced by 80–86%.

Copyright © 2017 by ASME
Topics: Lasers , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In