0

Full Content is available to subscribers

Subscribe/Learn More  >

Replacing Mechanized Oxyfuel Cutting Sensors With Ion Current Sensing

[+] Author Affiliations
Christopher R. Martin

Pennsylvania State University, Altoona, PA

Paper No. MSEC2017-2789, pp. V003T04A066; 8 pages
doi:10.1115/MSEC2017-2789
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME

abstract

This paper describes a method using electrical characteristics of the torch, flame, and work piece to replace active sensing elements most commonly used for mechanized oxyfuel cutting applications; height, fuel/oxygen ratio, work temperature, and preheat flow rate. Calibrations are given for the torch under test for standoff accurate to ±1/32 in (0.8 mm) and F/O ratio accurate to ±.008. Methods are proposed for balancing flow across multi-torch systems, and detecting the work kindling temperature. Additional work is needed if calibrated flow and work temperatures are to be measured electrically.

Copyright © 2017 by ASME
Topics: Sensors , Cutting

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In