0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Hardware TCP/IP Stack for Sensing Systems Intended for Monitoring of Mechanical Equipment

[+] Author Affiliations
Zhiqiang Xu, Quan Liu, Zhengying Li

Wuhan University of Technology, Wuhan, China

Paper No. MSEC2017-2641, pp. V003T04A063; 7 pages
doi:10.1115/MSEC2017-2641
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME

abstract

Fiber Bragg grating (FBG) sensors have been widely used in monitoring of the mechanic equipment. However, for measuring high-speed dynamic signal of a large mechanical equipment, the demodulation rate of the interrogator should be very high, while the number of sensors could be tens or hundreds, thus, a large amount of sensing data could be generated. Nonetheless, a network throughput of the interrogator based on the software stack is relatively low and a large amount of data cannot be transmitted simultaneously, which becomes the bottleneck of the sensing system. In order to promote the network throughput, a hardware TCP/IP stack based on the field programmable gate array (FPGA) is proposed. In contrast to the existing hardware stacks, this stack is designed with a new module structure that is divided according to functions instead of protocol types. It can realize both UDP and TCP transmissions with less logic elements than similar designs. Unlike ASIC TCP/IP stack, the entire system can be realized on a single FPGA chip and upgraded without changing of the original hardware circuit. The proposed design has two key features. Firstly, the hardware stack can be connected directly to the data acquisition logic part without software operations thus the data throughput from the signal acquisition to the network transmission can maintain a relatively high speed. Therefore, the system can demodulate data from hundreds of sensors at high speed and transmit them in real time. Secondly, the module structure is clear and independent of specific FPGA platform. Consequently, it can be transplanted or upgraded easily in order to meet different practical demands. The proposed design embodies the characteristics and advantages of the system on a programmable chip (SOPC). In order to validate the proposed design, all logic modules were simulated and the design was tested on the circuit board. Performance test results have shown that UDP and TCP throughputs of the proposed hardware stack are up to 80Mbps in the case of 100Mbps Ethernet controller chip, which is about eight times higher than throughput of software design. Finally the design was verified by monitoring of the oil pipeline platform. The obtained results have shown that proposed design can detect the vibration frequencies of the oil pipeline that are around 600Hz and it can sample 288 FBG sensors and transmit sensor data correctly. Thus the proposed design is suitable for a large sensing system intended for the dynamic monitoring of the mechanical equipment.

Copyright © 2017 by ASME
Topics: Hardware , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In