0

Full Content is available to subscribers

Subscribe/Learn More  >

Cutting Process Monitoring System Using Audible Sound Signals and Machine Learning Techniques: An Application to End Milling

[+] Author Affiliations
Achyuth Kothuru, Sai Prasad Nooka, Rui Liu

Rochester Institute of Technology, Rochester, NY

Paper No. MSEC2017-3069, pp. V003T04A050; 10 pages
doi:10.1115/MSEC2017-3069
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME

abstract

In a fully automated manufacturing system, tool condition monitoring system is essential to detect the failure in advance and minimize the manufacturing loses with the increase in productivity. To look for a reliable, simple and cheap solution, this paper proposes a new tool wear monitoring model to detect the tool wear progression and early detection of tool failure in end milling using audible sound signals. In this study, cutting tools are classified into six classes based on different flank wear ranges. A series of end milling experiments are operated with a broad range of cutting conditions for each class to collect sound signals. A machine learning algorithm that incorporates support vector machine (SVM) approach coupled with the application of time and frequency domain analysis is developed to correlate observed sound signals’ signatures to tool wear conditions. The performance evaluation results of the proposed algorithm have shown accurate predictions in detecting tool wear conditions from the sound signals. In addition, the proposed machine learning approach has shown the fastest response rate, which provides the good solution for on-line cutting tool monitoring.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In