0

Full Content is available to subscribers

Subscribe/Learn More  >

Implementation of a Knowledge-Based Production Planning Including a Direct Manipulative Process Editor and a Mediator Architecture

[+] Author Affiliations
Benjamin Gernhardt, Tobias Vogel, Matthias Hemmje

University of Hagen, Hagen, Germany

Lihui Wang

Royal Institute of Technology, Stockholm, Sweden

Paper No. MSEC2017-3006, pp. V003T04A045; 11 pages
doi:10.1115/MSEC2017-3006
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME

abstract

Today, in the era of modern Intelligent Production Environments (IPE) and Industry 4.0, the manufacturing of a product takes place in various partial steps and these mostly in different locations, potentially distributed all over the world. The producing companies must assert in the global market and always find new ways to cut costs by saving tax, changing to the best providers, and by using the most efficient and fastest production processes. Furthermore, they must be inevitably based on a cloud-based repository and distributed architectures to make data and information accessible everywhere as well as development processes and knowledge available for a worldwide cooperation. A so called Collaborative Adaptive (Production) Process Planning (CAPP) can be supported by semantic approaches for knowledge representation and management as well as knowledge sharing, access, and re-use in a flexible and efficient way. In this way, to support CAPP scenarios, semantic representations of such knowledge integrated into a machine-readable process formalization is a key enabling factor for sharing in cloud-based knowledge repositories. This is especially required for, e.g., Small and Medium Enterprises (SMEs). When SMEs work together on a production planning for a joint product, they exchange component production and manufacturing change information between different planning subsystems. These exchanges are mostly based on the already well-established Standard for the Exchange of Product model data (STEP), not least to obtain a computer-interpretable representation. Moreover, so-called Function Block (FB) Domain Models could support these planning process. FBs serve as a high-level planning-process knowledge-resource template and to the representation of knowledge. Furthermore, methodologies are required, which based on process-oriented semantic knowledge-representation, such as Process-oriented Knowledge-based Innovation Management (German: Wissens-basiertes Prozess-orientiertes Innovations Management, WPIM). WPIM is already a web- and cloud-based tool suites and can represent such planning processes and their knowledge resources and can therefore be used to support the integration and the management of distributed CAPP knowledge in Manufacturing Change Management (MCM), as well as its access and re-use. That is also valid for Assembly-, Logistics- and Layout Planning (ALLP). On the one hand, a collaborative planning in a machine-readable and integrated representation will be possible as well as an optimization for mass production. On the other hand, within a cloud-based semantic knowledge repository, that knowledge can be shared with all partners and contributors. To combine all these functionalities, in 2016 we have already introduced a method, called Knowledge-based Production Planning (KPP). We outlined the theoretical advantages of integrating CAPP with Collaborative Manufacturing Change Management (CMCM) in the last year at MSEC16. In this Paper, we will demonstrate our first implementations of the KPP application with an integrated visual direct manipulative process editor as well as a first prototype of our mediator architecture with a semantic integration including a query library based on the KPP ontology.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In