Full Content is available to subscribers

Subscribe/Learn More  >

Chip Adhesion and Tool Wear in Driven Rotary Cutting of Stainless Steel

[+] Author Affiliations
Hiroyuki Sasahara, Masato Goto

Tokyo University of Agriculture and Technology, Koganei, Japan

Wataru Takahashi

Mitsubishi Materials Co., Joso, Japan

Hiromasa Yamamoto, Toshiyuki Muraki

Yamazaki Mazak Co., Oguchi, Japan

Paper No. MSEC2017-2958, pp. V003T04A022; 6 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME


In driven rotary cutting of stainless steel, adhesions sometimes occur on the tool, causing increased wear. The type of coolant supplying methods and tool rotation speed affects largely on the adhesion because it depends on the temperature and lubricating performance. Results showed that in a circumferential velocity ratio of 1.0, which means tangential component of tool peripheral speed is equal to work surface speed, there is no adhesion on the tool after cutting. In a circumferential velocity ratio of 2.0, adhesion occurred with overcooling of the flood coolant, and wear increased by adhesions to the rotating tool. It was found that the thermal cracks on the cutting edge was one of the factors of increased wear and chipping. Adhesives on the tool edge also accelerated the chipping.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In