Full Content is available to subscribers

Subscribe/Learn More  >

Smart Manufacturing Through a Framework for a Knowledge-Based Diagnosis System

[+] Author Affiliations
Michael P. Brundage, Boonserm Kulvatunyou

National Institute of Standards and Technology, Gaithersburg, MD

Toyosi Ademujimi, Badarinath Rakshith

Pennsylvania State University, State College, PA

Paper No. MSEC2017-2937, pp. V003T04A012; 9 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME


Various techniques are used to diagnose problems throughout all levels of the organization within the manufacturing industry. Often times, this root cause analysis is ad-hoc with no standard representation for artifacts or terminology (i.e., no standard representation for terms used in techniques such as fishbone diagrams, 5 why’s, etc.). Once a problem is diagnosed and alleviated, the results are discarded or stored locally as paper/digital text documents. When the same or similar problem reoccurs with different employees or in a different factory, the whole process has to be repeated without taking advantage of knowledge gained from previous problem(s) and corresponding solution(s). When discussing the diagnosis, personnel may miscommunicate over terms used in the root cause analysis leading to wasted time and errors. This paper presents a framework for a knowledge-based manufacturing diagnosis system that aims to alleviate these miscommunications. By learning from diagnosis methods used in manufacturing and in the medical community, this paper proposes a framework which integrates and formalizes root cause analysis by categorizing faults and failures that span multiple organizational levels. The proposed framework aims to enable manufacturing operations by leveraging machine learning and semantic technologies for the manufacturing system diagnosis. A use case for the manufacture of a bottle opener demonstrates the framework.

Copyright © 2017 by ASME
Topics: Manufacturing



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In