Full Content is available to subscribers

Subscribe/Learn More  >

Research on the Coordination of Multiple Air Circulating Tempering Furnaces Using System Identification and Predictive Control in Manufacturing of Non-Combustible Aluminum Composite Panels

[+] Author Affiliations
Renhe Ji, Dong Du, Baohua Chang, Li Wang, Jinle Zeng, Yuxiang Hong

Tsinghua University, Beijing, China

Paper No. MSEC2017-2830, pp. V003T04A008; 7 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 3: Manufacturing Equipment and Systems
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5074-9
  • Copyright © 2017 by ASME


Non-combustible aluminum composite panel is a new type of green building and decoration material with high security. However, during its manufacturing process, the incongruity of temperature cyclings between a series of air circulating tempering furnaces on the production line may cause a serious negative impact on the stability of product quality. In this paper, a model of the temperature control system of a tempering furnace was built at first by applying parameter identification technique to the off-line data of the furnace. Then, an approach based on online parameter identification and model predictive control was proposed to solve the dilemma that the specific temperature range of one single tempering furnace and the temperature cyclings coordination of multiple tempering furnaces can not be attained at the same time when using PID or On-Off control method. A method was presented to optimize the phase difference between the temperature cyclings of differents furnaces’ to lower the fluctuation of product quality. Finally, experiments are used to demonstrate the descent in fluctuation using the methods proposed in this paper.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In