0

Full Content is available to subscribers

Subscribe/Learn More  >

Coolant Channel and Flow Characteristics of MQL Drill Bits: Experimental and Numerical Analyses

[+] Author Affiliations
Yi-Tang Kao, Behrouz Takabi, Mozheng Hu, Bruce L. Tai

Texas A&M University, College Station, TX

Paper No. MSEC2017-3060, pp. V002T03A031; 7 pages
doi:10.1115/MSEC2017-3060
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

In minimum quantity lubrication (MQL) machining, mist flow plays a critical role in both lubrication and cooling. This paper aims to characterize the mist flow structure of different coolant channel designs for through-tool MQL drilling. Two different channel geometries (circular and triangular cross-section) and two sizes of each channel were selected for both experimental and computational analyses. The flow structure was captured by a high-speed camera and explained using computational fluid dynamics (CFD). The results showed that, for all the channel geometries, higher oil concentration was found close to the drill center. Specifically, in the triangular channel, the flow tends to accumulate at three corners. This study also measured the airspeed, which increased with the hydraulic diameter of the channel. These results have demonstrated the effects of channel geometry and the feasibility of using CFD in mist flow analysis.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In