Full Content is available to subscribers

Subscribe/Learn More  >

Subsurface Microstructure and Crystallographic Texture in Surface Severe Plastic Deformation Processes

[+] Author Affiliations
Zhiyu Wang, Christopher Saldana

Georgia Institute of Technology, Atlanta, GA

Saurabh Basu

Pennsylvania State University, State College, PA

Paper No. MSEC2017-2915, pp. V002T03A030; 7 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


Severe plastic burnishing was investigated as a promising surface severe plastic deformation technique for generating gradient microstructure surfaces. The deformed state of oxygen free high conductivity copper workpieces during the surface deformation process was determined with high-speed imaging, this complemented by microstructure characterization using orientation image microscopy based on electron backscatter diffraction. Varying deformation levels in terms of both magnitude and gradient on the processed surface were achieved through control of the incident tool angle. Refined microstructures, including laminate grains elongated in the velocity direction and equiaxed sub-micron grains were observed in the subsurface and were found to be controlled by the combined effects of strain and strain rate in the surface deformation process. Additionally, crystallographic texture evolutions were characterized, showing typical shear textures predominately along the <110> partial fiber. The rotation of texture from original ideal orientation positions was related directly to the deformation history produced by sliding process. Based on these observations, a controllable framework for producing the processed surface with expected mechanical and microstructural responses is suggested.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In