Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication and Characterization of a Biocompatible Coating Formed on a Heat-Treated Magnesium Alloy Using Micro-Arc Oxidation

[+] Author Affiliations
Hamdy Ibrahim, Mohammad Elahinia

University of Toledo, Toledo, OH

Paper No. MSEC2017-3080, pp. V002T03A029; 6 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


The fast corrosion rate of magnesium (Mg) alloys is the main problem associated with the use of such biocompatible alloys for bone fixation applications. The corrosion resistance of Mg alloys can be improved by different post-fabrication processes such as heat treatment and coating. We have heat-treated a biocompatible Mg-1.2Zn-0.5Ca (wt.%) alloy at optimized heat treatment parameters to achieve the highest mechanical strength and corrosion resistance. Afterwards, the heat-treated alloy was coated with a ceramic layer using micro arc oxidation (MAO) process to further enhance the corrosion resistance.

The microstructure of the prepared samples was investigated using optical microscopy and scanning electron microscopy (SEM). The corrosion characteristics were determined by conducting in vitro electrochemical and immersion corrosion tests.

The results showed that the heat treatment process successfully improved the mechanical and corrosion properties of the Mg-1.2Zn-0.5Mn (wt.%) alloy. Both the in vitro electrochemical and immersion corrosion tests showed that the MAO-coated samples have a significantly higher corrosion resistance which results in a significantly lower corrosion rate. This study indicated that the biocompatible coating produced by MAO process may be suitable for providing heat-treated Mg-Zn-Ca-based alloys with protection from corrosion towards synthesizing bone fixation materials in clinical application.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In