Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic Nano-Crystal Surface Modification Assisted Gas Nitriding of Ti6Al4V Alloy

[+] Author Affiliations
Jun Liu, Zhencheng Ren, Chi Ma, Yalin Dong, Chang Ye

University of Akron, Akron, OH

Paper No. MSEC2017-2847, pp. V002T03A027; 5 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


The effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on the gas nitriding of Ti6Al4V alloy has been investigated. The gas nitriding was performed at 700 and 800 °C. The microstructure after UNSM and gas nitriding was characterized using X-ray diffraction and scanning electron microscopy. Microstructural investigations revealed the formation of an approximately 10 μm thick severe plastic deformation (SPD) layer after UNSM treatment. After nitriding at 700 °C and 800 °C, a compound layer consisting of an approximately 0.2 μm and 1.9 μm thick nitride layer was observed in UNSM-treated Ti6Al4V alloy, which exhibits a nearly two-fold increase in nitride layer thickness as compared with the un-treated sample. This suggests that the nitrogen adsorption and the reaction capability are enhanced in the UNSM-treated Ti6Al4V alloy. This enhancement can be attributed to the high density dislocations and grain boundaries introduced by UNSM that serve as efficient diffusivity channels for interstitial gaseous atoms.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In