0

Full Content is available to subscribers

Subscribe/Learn More  >

Phase Transformations During High-Speed, High-Temperature Scratching of Silicon

[+] Author Affiliations
Chirag Alreja, Sathyan Subbiah

Indian Institute of Technology Madras, Chennai, India

Paper No. MSEC2017-2687, pp. V002T03A024; 8 pages
doi:10.1115/MSEC2017-2687
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

Higher temperature assisted processing of silicon, such as in heat-assisted diamond turning, is often being considered to improve surface integrity. At higher temperatures and under mechanical loading and unloading, caused by the moving tool, silicon deforms plastically often in association with occurrence of phase transformations. This paper investigates such phase transformations in rotational scratching of single crystal (100) p-type silicon with a conical diamond tool under various furnace-controlled temperatures ranging from room temperature to 500 °C and at scratching speeds comparable to that used in the diamond turning process (1 m/s). Phase transformation study, using Raman spectroscopy, at various crystal orientations, show differences in phases formed at various temperatures when compared to that reported in indentation. The tendency to form phases is compared between scratched and diamond turned surfaces at room temperature, and also with that reported at low scratching speeds in the literature. Analysis of depths of the scratched groove indicates that that at temperatures beyond a certain threshold, plastic deformation and significant elastic recovery may be causing shallow grooves. This study is expected to help tune heat-assisted diamond turning conditions to improve surface formation.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In