Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of Micro-Channels in PMMA by Tip-Based Microfabrication Technique: Depth and Friction Analysis

[+] Author Affiliations
Felicia Stan, Catalin Fetecau, Nicoleta V. Stanciu

Dunarea de Jos University of Galati, Galati, Romania

Paper No. MSEC2017-2763, pp. V002T03A017; 8 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


In this paper, millimeter-scale straight parallel micro-channels were fabricated in PMMA (Polymethyl-methacrylate) using the tip-based micro-fabrication method. The dimensional characteristics (channel width, channel depth and pile-up height) of micro-channels were evaluated and the effects of normal load and speed on the micro-channel geometry and friction were examined. A logarithmic relationship between the normal load and micro-channel depth was identified. The experimental results indicate that the selection of the normal load is critical to achieve a desired micro-channel geometry using a single pass scratching. To machine a micro-channel with a finite depth in PMMA, the normal load must be higher than 4.5 N. Within the range of the tested normal loads, about 70% of the channel height was elastically recovered after a single pass, and pile-ups as high as 50–60% of the depth were observed along the micro-channel sides.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In