Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic Pelleting and Synchronized Torrefaction of Cellulosic Biomass for Bioenergy Production

[+] Author Affiliations
Yang Yang, Nicholas Eisenbarth, Xiaoxu Song, Meng Zhang, Donghai Wang

Kansas State University, Manhattan, KS

Paper No. MSEC2017-2894, pp. V002T03A014; 7 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


The U.S. is sustainably producing of over 1 billion dry tons of biomass annually. This amount of biomass is sufficient to produce bioenergy that can replace about 30 percent of the nation’s current annual consumption of conventional fossil fuels. This then gives us the opportunity to turn waste into bioenergy that can assist in meeting the U.S. Renewable Fuel Standard (RFS). Besides being converted into bioethanol through the biochemical platform, biomass can also be utilized solid fuels to generate bioenergy through the thermochemical platform. Co-firing power plants use torrefied biomass pellets combined with coal for electricity generation. A two-step process, torrefaction followed by pelleting, is the prevailing technique that the industry is currently using to produce torrefied biomass pellets. Torrefaction converts biomass into biochar with high heating value, and pelleting densifies torrefied biochar into pellets with high durability and density. For the same purpose, we developed the ultrasonic pelleting and synchronized torrefaction of cellulosic biomass process, which is a single-step process to generate high quality solid fuel pellets with high heating value together with good durability and density. This study reports the first experimental investigation to demonstrate the feasibility of the novel process. Key process parameters have been identified, and their effects on the feasibility of generating quality torrefied biomass pellets are reported. Pellets are evaluated from the aspects of feasibility, durability, heating value, and thermal stability.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In