Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Laser and Mechanical Forming on the Hardness and Microstructural Layout of Commercially Pure Grade 2 Titanium Alloy Plates

[+] Author Affiliations
Kadephi V. Mjali

Cape Peninsula University of Technology, Cape Town, South Africa

Annelize Els-Botes

Council for Scientific & Industrial Research (CSIR), Pretoria, South Africa

Peter M. Mashinini

University of Johannesburg, Johannesburg, South Africa

Paper No. MSEC2017-2603, pp. V002T03A009; 9 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


This paper illustrates the effects of the laser and mechanical forming on the hardness and microstructural distribution in commercially pure grade 2 Titanium alloy plates. The two processes were used to bend commercially pure grade 2 Titanium alloy plates to a similar radius also investigate if the laser forming process could replace the mechanical forming process in the future. The results from both processes are discussed in relation to the mechanical properties of the material. Observations from hardness testing indicate that the laser forming process results in increased hardness in all the samples evaluated, and on the other hand, the mechanical forming process did not influence hardness on the samples evaluated. There was no change in microstructure as a result of the mechanical forming process while the laser forming process had a major influence on the overall microstructure in samples evaluated. The size of the grains became larger with increases in thermal gradient and heat flux, causing changes to the overall mechanical properties of the material. The thermal heat generated has a profound influence on the grain structure and the hardness of Titanium. It is evident that the higher the thermal energy the higher is the hardness, but this only applies up to a power of 2.5kW. Afterwards, there is a reduction in hardness and an increase in grain size. The cooling rate of the plates has been proved to play a significant role in the resulting microstructure of Titanium alloys. The scanning speed plays a role in maintaining the surface temperatures of laser formed Titanium plates resulting in changes to both hardness and the microstructure. An increase in heat results in grain growth affecting the hardness of Titanium.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In