0

Full Content is available to subscribers

Subscribe/Learn More  >

Vision-Based Real-Time Layer Error Quantification for Additive Manufacturing

[+] Author Affiliations
Haedong Jeong, Minsub Kim, Bumsoo Park, Seungchul Lee

UNIST, Ulsan, South Korea

Paper No. MSEC2017-2991, pp. V002T01A047; 9 pages
doi:10.1115/MSEC2017-2991
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

Quality assurance of Additive Manufacturing (AM) products has become an important issue as the AM technology is extending its application throughout the industry. However, with no definite measure to quantify the error of the product and monitor the manufacturing process, many attempts are made to propose an effective monitoring system for the quality assurance of AM products. In this research, a novel approach for quantifying the error in real-time is presented through a closed-loop vision-based tracking method. As conventional AM processes are open-loop processes, we focus on the implementation of real-time error quantification of the products through the utilization of a closed-loop process. Three test models are designed for the experiment, and the tracking data from the camera will be compared with the G-code of the product to evaluate the geometrical errors. The results obtained from the camera analysis will then be validated through comparison of the results obtained from a 3D scanner.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In