0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessing the Geometric Integrity of Additive Manufactured Parts From Point Cloud Data Using Spectral Graph Theoretic Sparse Representation-Based Classification

[+] Author Affiliations
M. Samie Tootooni, Ashley Dsouza, Ryan Donovan, Peter Borgesen

Binghamton University, Binghamton, NY

Prahalad K. Rao

University of Nebraska – Lincoln, Lincoln, NE

Zhenyu (James) Kong

Virginia Tech, Blacksburg, VA

Paper No. MSEC2017-2794, pp. V002T01A042; 13 pages
doi:10.1115/MSEC2017-2794
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

This work proposes a novel approach for geometric integrity assessment of additive manufactured (AM, 3D printed) components, exemplified by acrylonitrile butadiene styrene (ABS) polymer parts made using fused filament fabrication (FFF) process. The following two research questions are addressed in this paper: (1) what is the effect of FFF process parameters, specifically, infill percentage (If) and extrusion temperature (Te) on geometric integrity of ABS parts?; and (2) what approach is required to differentiate AM parts with respect to their geometric integrity based on sparse sampling from a large (∼ 2 million data points) laser-scanned point cloud dataset? To answer the first question, ABS parts are produced by varying two FFF parameters, namely, infill percentage (If) and extrusion temperature (Te) through design of experiments. The part geometric integrity is assessed with respect to key geometric dimensioning and tolerancing (GD&T) features, such as flatness, circularity, cylindricity, root mean square deviation, and in-tolerance percentage. These GD&T parameters are obtained by laser scanning of the FFF parts. Concurrently, coordinate measurements of the part geometry in the form of 3D point cloud data is also acquired. Through response surface statistical analysis of this experimental data it was found that discrimination of geometric integrity between FFF parts based on GD&T parameters and process inputs alone was unsatisfactory (regression R2 < 50%). This directly motivates the second question. Accordingly, a data-driven analytical approach is proposed to classify the geometric integrity of FFF parts using minimal number (< 2% of total) of laser-scanned 3D point cloud data. The approach uses spectral graph theoretic Laplacian eigenvalues extracted from the 3D point cloud data in conjunction with a modeling framework called sparse representation to classify FFF part quality contingent on the geometric integrity. The practical outcome of this work is a method that can quickly classify the part geometric integrity with minimal point cloud data and high classification fidelity (F-score > 95%), which bypasses tedious coordinate measurement.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In