0

Full Content is available to subscribers

Subscribe/Learn More  >

Process Effect on Part Surface Roughness in Powder-Bed Electron Beam Additive Manufacturing

[+] Author Affiliations
Subin Shrestha, Y. Kevin Chou

University of Alabama, Tuscaloosa, AL

Paper No. MSEC2017-3015, pp. V002T01A017; 8 pages
doi:10.1115/MSEC2017-3015
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

Surface roughness is an inherent attribute of parts fabricated by Powder-Bed Electron Beam Additive Manufacturing (PB-EBAM) process. The wide application of PB-EBAM technology is affected by the part surface quality and therefore needs to be studied and optimized so as to establish PB-EBAM process among other manufacturing processes. Therefore, in this study, the build surface of fabricated parts built with different speed function (SF) is analyzed using white light interferometry. The results show that, in general the build surface roughness along the beam moving direction slightly increases with the scanning speed. On the other hand, the hatch spacing noticeably affects the surface roughness in the transverse direction. The experimentally acquired average surface roughness increased with increasing speed function from about 3 μm for SF20 case to 11 μm for SF65 case. In addition, a 3D VOF model has been attempted to predict the surface formation during the PB-EBAM process. Thus simulated SF36 case was able to predict different surface features and was in good agreement with experiment which shows that surface roughness analysis with numerical model may be a possible approach.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In