Full Content is available to subscribers

Subscribe/Learn More  >

Process Development for a Robotized Laser Wire Additive Manufacturing

[+] Author Affiliations
Meysam Akbari, Yaoyu Ding, Radovan Kovacevic

Southern Methodist University, Dallas, TX

Paper No. MSEC2017-2951, pp. V002T01A015; 11 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME


Additive manufacturing has attracted the attention of industries such as aerospace and automotive as well as the medical technology sectors in recent years. Among all metal-based additive techniques, laser metal wire deposition offers some advantages like shorter processing time, more efficient material usage, and a larger buildup envelop. It has been found that robotized laser/wire additive manufacturing (RLWAM) is a demanding process. A plethora of process parameters must be controlled compared to other laser-based metal deposition processes. The influence of main process parameters such as laser power, stepover increment, wire feed speed, travel speed and z-increment was investigated in this study to find the optimal values. Droplet formation, wire dripping, irregular deposition in the first layer, and deviation of the wire tip were also found to be the main obstacles throughout the process and practical solutions were proposed to deal with these issues. In this study, an 8-axis robot (6-axis arm robot with a 2-axis positioner) and a 4 kW fiber laser along with a wire feeder were integrated to print the different geometrical shapes in 3D. In order to verify the geometrical accuracy of the as-built part, the buildup was scanned using a portable 3D laser scanner. The 3D representation, the Standard Tessellation Language (STL) format obtained from the buildup, was compared with the original CAD model. The results show that RLWAM can be successfully applied in printing even complicated geometries.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In