0

Full Content is available to subscribers

Subscribe/Learn More  >

Fundamental Study of Fused-Coating Based Metal Additive Manufacturing

[+] Author Affiliations
Xuewei Fang, Jun Du, Zhengying Wei, Xin Wang, Pengfei He, Bowen Wang, Hao Bai, Bingheng Lu

Xi’an Jiaotong University, Xi’an, China

Paper No. MSEC2017-2843, pp. V002T01A003; 8 pages
doi:10.1115/MSEC2017-2843
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 2: Additive Manufacturing; Materials
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5073-2
  • Copyright © 2017 by ASME

abstract

Fused-coating based metal additive manufacturing (FCAM) is a newly established direct metal forming process. This method is characterized by deposition metal materials in a crucible and under the driving pressure the molten metal is extruded out from a special designed nozzle. Hence, dense metal parts with different kind of materials can be built on the moving substrate layer by layer. It provides a method to fabricate metal components with lower costs, clean and cheap materials compared with other AM processes. To study the feasibility of this new AM methodology, an experimental system with a molten metal stream generator, a fused-coating nozzle, a process monitor unit, an inert atmosphere protection unit and a temperature measurement unit has been established. In order to determine the proper parameters in the building process, a metal fused-coating heat transfer model analysis and experimental study is performed by using Sn63-37Pb alloy in building three-dimensional components. The process parameters that may affect fabrication are molten and substrate temperature, layer thickness, the substrate-speed, the temperature of substrate, the distance between the nozzle and substrate and the pressure. Microscopy images were used to investigate the metallurgical bonding between layers. The influence of different parameters on the layer thickness and width was studied quantitatively. At last, the optimal parameter was used to fabricate complex metal parts to demonstrate the feasibility of this new technology compared with other AM methods.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In