0

Full Content is available to subscribers

Subscribe/Learn More  >

Bending Mechanism Analysis for Laser Forming of Metal Foam

[+] Author Affiliations
Tizian Bucher, Adelaide Young, Y. Lawrence Yao

Columbia University, New York, NY

Min Zhang, Chang Jun Chen

Soochow University, Suzhou, China

Paper No. MSEC2017-3026, pp. V001T02A060; 11 pages
doi:10.1115/MSEC2017-3026
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 1: Processes
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5072-5
  • Copyright © 2017 by ASME

abstract

To date, the industrial production of metal foam components has remained challenging, since few methods exist to manufacture metal foam into the shapes required in engineering applications. Laser forming is currently the only method with a high geometrical flexibility that is able to shape arbitrarily sized parts. What prevents the industrial implementation of the method, however, is that no detailed experimental analysis has been done of the metal foam strain response during laser forming, and hence the existing numerical models have been insufficiently validated. Moreover, current understanding of the laser forming process is poor, and it has been assumed, without experimental proof, that the temperature gradient mechanism (TGM) from sheet metal forming is the governing mechanism for metal foam.

In this study, these issues were addressed by using digital image correlation (DIC) to obtain in-process and post-process strain data that was then used to validate a numerical model. Additionally, metal foam laser forming was compared with metal foam 4-point bending and sheet metal laser forming to explain why metal foam can be bent despite its high bending stiffness, and to evaluate whether TGM is valid for metal foam.

The strain measurements revealed that tensile stretching is only a small contributor to foam bending, with the major contributor being compression-induced shortening. Unlike in sheet metal laser forming, this shortening is achieved through cell wall bending, as opposed to plastic compressive strains. Based on this important difference with traditional TGM, a modified temperature gradient mechanism (MTGM) was proposed.

Copyright © 2017 by ASME
Topics: Lasers , Metal foams

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In