Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Machining Distortion due to Residual Stresses in Quenched Aluminum

[+] Author Affiliations
Destiny R. Garcia, Michael R. Hill, Barbara S. Linke

University of California, Davis, Davis, CA

Jan C. Aurich

University of Kaiserslautern, Kaiserslautern, Germany

Paper No. MSEC2017-2878, pp. V001T02A031; 6 pages
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 1: Processes
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5072-5
  • Copyright © 2017 by ASME


Manufacturing methods and procedures are advancing through research and development, to optimize machine tools, machining strategies, and the overall manufacturing system. In the aerospace industry, machining distortions, or the deviation of part shape from the original intent after being released from a fixture, occur, reducing productivity. Residual stresses locked into the workpiece are a primary factor contributing to machining distortions. The residual stresses are induced by prior material processing steps such as rolling, forging, heat treating, etc. — which are needed in the aerospace industry for high strength.

Machining distortions result in significant economic losses due to reworking, remanufacturing, and/or rejecting components in the manufacturing and aerospace industries. Quenched 7050 T74 aluminum was used to investigate material removal with respect to milling distortions. Using material with a known residual stress profile, a prismatic u-shape geometry was machined and distortions were characterized, quantified, and described in detail. This paper shows a transparent and repeatable method for characterizing distortion for machined parts. The results from the distorted u-shapes indicate similar characteristics from distortion due to bulk residual stresses and machining factors.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In