0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotary Ultrasonic Machining: Effects of Tool End Angle on Delamination of CFRP Drilling

[+] Author Affiliations
Palamandadige K. S. C. Fernando, Meng (Peter) Zhang

Kansas State University, Manhattan, KS

Zhijian Pei

Texas A & M University, College Station, TX

Weilong Cong

Texas Tech University, Lubbock, TX

Paper No. MSEC2017-2863, pp. V001T02A015; 6 pages
doi:10.1115/MSEC2017-2863
From:
  • ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
  • Volume 1: Processes
  • Los Angeles, California, USA, June 4–8, 2017
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5072-5
  • Copyright © 2017 by ASME

abstract

Aerospace, automotive and sporting goods manufacturing industries have more interest on carbon fiber reinforced plastics due to its superior properties, such as lower density than aluminum; higher strength than high-strength metals; higher stiffness than titanium etc. Rotary ultrasonic machining is a hybrid machining process that combines the material removal mechanisms of diamond abrasive grinding and ultrasonic machining. Hole-making is the most common machining operation done on carbon fiber reinforced plastics, where delamination is a major issue. Delamination reduces structural integrity and increases assembly tolerance, which leads to rejection of a part or a component. Comparatively, rotary ultrasonic machining has been successfully applied to hole-making in carbon fiber reinforced plastics. As reported in the literature, rotary ultrasonic machining is superior to twist drilling of carbon fiber reinforced plastics in six aspects: cutting force, torque, surface roughness, delamination, tool life, and material removal rate. This paper investigates the effects of tool end angle on delamination in rotary ultrasonic machining of carbon fiber reinforced plastics. Several investigators have cited thrust force as a major cause for delamination. Eventhogh, it is found on this investigation, tool end angle has more significant influence on the delamination in rotary ultrasonic machining of carbon fiber reinforced plastics comparing to cutting force and torque.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In