Full Content is available to subscribers

Subscribe/Learn More  >

A Survey of Railyard Worker Protection Approaches and System Design Considerations

[+] Author Affiliations
Subharthi Banerjee, Michael Hempel, Hamid Sharif

University of Nebraska-Lincoln, Omaha, NE

Paper No. JRC2017-2246, pp. V001T06A007; 10 pages
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME


Railroad environments are generally considered to be among the most dynamic workplace environments, even with constant improvement efforts by the railroad industry. While there has been great progress in equipment safety, personnel safety is a significantly harder challenge. These challenges are primarily derived from the presence of heavy moving machinery in close proximity to personnel and the difficulty of designing reliable wearable protection devices. Additionally, variable weather conditions, challenging walking conditions (ballast, trip hazards, etc.), and difficulty to focus on environment, moving objects, and on tasks at hand place the employees in constant peril. Therefore, our survey is focused on exploring solutions for protecting employees through unified system modeling and design that makes the employee integral to the process and results in personal protective devices that work with the environment and the employee, not against them. The optimal system design integrates not only protection of the employees from falls, unsafe practices, or collisions, but also aids in resource planning, safe operation and accounting of “near-miss” situations.

In recent years the railroads have made significant investments in process automation and monitoring solutions such as Wireless Sensor Networks. These technologies are becoming increasingly cloud-connected and autonomous. They provide a plethora of information about equipment positions, movement, railcar lading, and many other factors, all of which are highly useful in the design and implementation of a railyard worker protection system. They allow us to predict position and movement, and can thus be used to provide effective proximity detection and alerting in some railyard regions where these systems are installed. Additionally, we discuss several technologies addressing near-collision, fall, and proximity situations through RF and non-RF-based techniques. The railroad industry has been advancing efforts leveraging these technologies to improve the safety of their workers.

However, there are also many challenges that remain largely unaddressed. For example, in railroads, a detailed and exhaustive causation analysis for worker incidents has yet to be conducted. Therefore, in an environment like a railyard there is no solution to detect or prevent Employee on Duty (EOD) fall, collision, or health issues such as dehydration, psychological issues and high blood pressure. Protective devices worn by workers is believed to be one of the most important, cost-effective, and scalable potential candidate solutions. Recent advances are making wearable wireless body area networks (WBAN) and wireless sensor networks (WSNs) that are distributed and large-scale a reality. Such distributed networks consist of wearable sensors, fixed-installation sensors and communication links between all of them. The challenges are found in selecting wearable sensors, researching reliable communication among nodes without interfering with proximity detection and suitable for high-multipath, non-line of sight channel conditions, wearable antenna designs, power supply requirements, etc.

A dense, distributed, large-scale environment like a railyard requires comprehensive workspace modelling and safety analysis. Interference related to RF sensor deployment, blind spots in vision-based approaches, and wireless propagation in intra and inter-WBAN communication due to dense non-Line-of-Sight workspace environments, metallic heavy machinery and the use of RF sensors, are all individual research challenges in this domain.

This paper reviews these challenges, explores potential solutions, and thus provides a comprehensive survey of a holistic system design approach for a wearable railyard worker protection system that is unobtrusive, effective, and reliable.

Copyright © 2017 by ASME
Topics: Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In