0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Prognostic Techniques for Surface Defect Growth in Railroad Bearing Rolling Elements

[+] Author Affiliations
Nancy De Los Santos, Robert Jones, Constantine M. Tarawneh, Arturo Fuentes, Anthony Villarreal

University of Texas Rio Grande Valley, Edinburg, TX

Paper No. JRC2017-2262, pp. V001T02A009; 5 pages
doi:10.1115/JRC2017-2262
From:
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME

abstract

Prevention of bearing failures which may lead to catastrophic derailment is a major safety concern for the railroad industry. Advances in bearing condition monitoring hold the promise of early detection of bearing defects, which will improve system reliability by permitting early replacement of failing components. However, to minimize disruption to operations while providing the maximum level of accident prevention that early detection affords, it will be necessary to understand the defect growth process and try to quantify the growth speed to permit economical, non-disruptive replacement of failing components rather than relying on immediate removal upon detection. The study presented here investigates the correlation between the rate of surface defect (i.e. spall) growth per mile of full-load operation and the size of the defects. The data used for this study was acquired from defective bearings that were run under various load and speed conditions utilizing specialized railroad bearing dynamic test rigs operated by the University Transportation Center for Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV). Periodic removal and disassembly of the railroad bearings was carried out for inspection and defect size measurement and documentation. Castings were made of spalls using low-melting, zero shrinkage Bismuth-based alloys so that a permanent record of the full spall geometry could be retained. Spalls were measured using optical techniques coupled with digital image analysis and also with a manual coordinate measuring instrument with the resulting field of points manipulated in MatLab™ and Solidworks™. The spall growth rate in area per mile of full-load operation was determined and, when plotted versus spall area, clear trends emerge. Initial spall size is randomly distributed as it depends on originating defect depth, size, and location on the rolling raceway. The growth of surface spalls is characterized by two growth regimes with an initial slower growth rate which then accelerates when spalls reach a critical size. Scatter is significant but upper and lower bounds for spall growth rates are proposed and the critical dimension for transition to rapid spall growth is estimated. The main result of this study is a preliminary model for spall growth which can be coupled to bearing condition monitoring tools to permit economical scheduling of bearing replacement after the initial detection of spalls.

Copyright © 2017 by ASME
Topics: Bearings , Railroads

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In