Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Particle Size and Shape Characteristics on Ballast Shear Strength: A Numerical Study Using the Direct Shear Test

[+] Author Affiliations
Debakanta Mishra, S. M. Naziur Mahmud

Boise State University, Boise, ID

Paper No. JRC2017-2322, pp. V001T01A014; 10 pages
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME


The ballast layer serves as a major structural component in typical ballasted railroad track systems. When subjected to an external load, ballast particles present a complex mechanical response which is strongly dependent on particle to particle interactions within this discrete medium. One common test used to study the shear strength characteristics of railroad ballast is the Direct Shear Test (DST). However, it is often not feasible in standard geotechnical engineering laboratories to conduct direct shear tests on ballast particles due to significantly large specimen and test setup requirements. Even for the limited number of laboratories equipped to accommodate the testing of such large specimens, conducting repeated tests for parametric analysis of different test and specimen parameters on shear strength properties is often not feasible. Numerical modeling efforts are therefore commonly used for such parametric analyses. An ongoing research study at Boise State University is using the Discrete Element Method (DEM) to evaluate the effects of varying particle size and shape characteristics (i.e., flakiness, elongation, roundness, angularity) on direct shear strength behavior of railroad ballast. A commercially available three-dimensional DEM package (PFC3D®) is being used for this purpose. In numerical modeling, railroad ballasts can be simulated using spheres (simple approach) and non-breakable clumps (complex approach). This paper utilizes both approaches to compare the ballast stress-strain response as obtained from DST. Laboratory test results available in published literature are being used to calibrate the developed numerical models. This paper presents findings from this numerical modeling effort, and draws inferences concerning the implications of these findings on the design and construction of railroad ballast layers.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In