Full Content is available to subscribers

Subscribe/Learn More  >

Accuracy of High Resolution 3D Optical Scanning of Crosstie Geometry for Assessment of Cross-Sectional Parameters and Long-Term Abrasion and Wear

[+] Author Affiliations
B. Terry Beck, Aaron A. Robertson, Robert J. Peterman, Kyle A. Riding, John Wu

Kansas State University, Manhattan, KS

Paper No. JRC2017-2296, pp. V001T01A012; 10 pages
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME


Current research is attempting to develop a comprehensive understanding of the material and manufacturing characteristics that have caused splitting failures in prestressed concrete railroad ties, in contrast with those characteristics that have resulted in ties that have performed well after many years in track. As part of this effort, a three-dimensional (3D) Optical Scanning System is being used to accurately scan and quantify the surface geometry and volume (abrasion and wear) of a large sample of previously manufactured ties. A commercially-available 3D Laser-Based Optical Scanning System, having a maximum spatial resolution of approximately 0.1mm, is being used to perform the surface scanning operation. The scanning procedure ideally produces an accurate 3D CAD model of the tie geometry, which can then be analyzed to determine the desired geometrical features at any given cross-section. It can likewise yield a measure of the tie volume, the variation of which gives some direct indication of the extent of abrasion and wear.

The feasibility of the scanning system has previously been demonstrated by extracting the detailed longitudinal variation of geometrical cross-section crosstie parameters of a typical CXT tie, including cross-sectional area, centroid, moment of inertia, and the eccentricity of the prestressing wires. These parameters are also known to be of importance to the accurate determination of transfer length from measured surface strain. The CXT tie geometry provides an excellent test case, and a challenge to the optical scanning system, since it has a complex scalloping along its length.

While the basic feasibility of the system operation has been demonstrated, the repeatability of the geometrical information obtained from the overall scanning and subsequent post-processing of surface geometrical data has yet to be assessed.

The main objective of this paper is to first demonstrate the volumetric measurement resolution experimentally by conducting repeated scans of the same tie by the same operator. The experimental scatter in scan results is presented for both cross-section parameter detail and tie volume assessment. The statistical variation in the measured tie volume ideally provides a reasonable measure of the expected volume resolution. In addition to assessing the statistics of these repeated scans, a CXT tie was subjected to induced abrasions of known (measurable) volume for direct comparison with the volume measurements obtained using the optical scanning procedure. This work represents an important next step toward identifying the accuracy of the assessment of abrasion and wear for the large number of ties currently being scanned after having been in long-term service.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In