Full Content is available to subscribers

Subscribe/Learn More  >

Determining the Remaining Prestress Force in a Prestressed Concrete Crosstie

[+] Author Affiliations
James D. Scott, Aaron A. Robertson, Robert J. Peterman, B. Terry Beck, Kyle A. Riding, John Wu

Kansas State University, Manhattan, KS

Paper No. JRC2017-2287, pp. V001T01A011; 8 pages
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME


The research presented herein focuses on determining the amount of internal prestressing force and bending resistance that is necessary to provide a durable long-term concrete railroad tie. In order to accomplish this, the researchers conducted a systematic evaluation of existing concrete ties that successfully withstood over 25 years of service in track. An experimental method for determining the remaining prestress force in these existing prestressed concrete railroad ties is currently under development.

The ties are first loaded in the upside-down orientation, with supports located at the rail seats, and two point loads applied at the center of the tie. A loading rate of 1,000 lb/min was used to initiate flexural cracking in the center of the tie. Once cracking was observed, the ties underwent 200 cycles of loading to reduce the friction between the prestressing tendons and the concrete. When the cycling was completed, the existing crack was instrumented with an extensometer to measure the Crack Opening Displacement (COD). The ties were loaded once more at 1,000 lb/min to develop a Load vs. COD relation.

A systematic method of determining the load required to reopen the crack from the Load vs. COD relation is being developed using ties cast at a manufacturing plant that were instrumented with internal vibrating-wire strain gages. Using the load required to reopen the crack, along with the known cross-sectional properties at the center of the tie, the remaining prestress force is calculated through equilibrium of forces. This method allows for the determination of the remaining prestress force in a member with known section properties to be obtained through load testing.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In