Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Fouling and Water Content of Ballast on Railway Substructure Bearing Capacity

[+] Author Affiliations
A. K. Rohrman, H. F. Kashani, C. L. Ho

University of Massachusetts Amherst, Amherst, MA

Paper No. JRC2017-2286, pp. V001T01A010; 5 pages
  • 2017 Joint Rail Conference
  • 2017 Joint Rail Conference
  • Philadelphia, Pennsylvania, USA, April 4–7, 2017
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5071-8
  • Copyright © 2017 by ASME


The performance of ballasted railway systems is commonly compromised by the infiltration of fine material into the voids of the ballast. This sand and finer grained materials in the ballast is known as fouling. Increased fouling can cause decreases in hydraulic conductivity and shear strength of the ballast, as well as reduce stiffness and resilient modulus of the overall track system. These problems can cause gradual deterioration of the track, which could eventually require maintenance. One of the largest source of fouling comes from ballast breakdown resulting from abrasion caused under repeated loading. This study aims to investigate the effects of fouling from ballast breakdown on the bearing capacity of the substructure that supports the rail superstructure. Previous investigations at the University of Massachusetts Amherst utilized large scale 10-inch (25.4 cm) diameter triaxial tests on granitic ballast with fouling from ballast breakdown. The tests were run with fouling contents of 0% (clean ballast), 15%, and 30% and at water contents varying from dry ballast to field capacity. Confining pressures of 5 psi (34.5 kPa), 10 psi (68.9 kPa) and 15 psi (103.4 kPa) were used in this series of tests. Using the results from these tests, the Mohr-Coulomb strength properties can be determined for each case. This study will make use of the strength properties obtained from the results of these tests and apply them using two commonly used bearing capacity analyses. The first model is the Meyerhof and Hanna Method which considers the track as a continuous footing over a layered system. This model considers two modes of failure; punching of an individual sleeper, and track system bearing. The second model applied is the slope stability method, which uses a two-dimensional limit equilibrium approach and the method of slices to determine a factor of safety against slope stability. This analysis is commonly performed using various software programs. In this study, SLOPE/W from the GeoStudio software package is utilized for analysis. The factors of safety resulting from the bearing capacity analysis using these two methods will be compared for each of the test configurations performed, which will help to confirm the results of the analyses. Since the Mohr-Coulomb strength properties change with the degree of fouling and the water content of the ballast, it is expected that this will have some effect on the bearing capacity of the track substructure. The results of these analyses showing the effects of water content and fouling of ballast on overall track substructure bearing capacity are presented in this paper.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In