Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Model Predictive Control Strategies for a Parallel Evaporator Diesel Engine Waste Heat Recovery System

[+] Author Affiliations
Adamu Yebi, Bin Xu, Simona Onori, Zoran Filipi, Mark Hoffman

Clemson University, Greenville, SC

Xiaobing Liu, John Shutty

BorgWarner Inc., Auburn Hills, MI

Paul Anschel

BorgWarner Turbo Systems, Arden, NC

Paper No. DSCC2016-9801, pp. V002T19A003; 9 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5070-1
  • Copyright © 2016 by ASME


This paper discusses the control challenges of a parallel evaporator organic Rankine cycle (ORC) waste heat recovery (WHR) system for a diesel engine. A nonlinear model predictive control (NMPC) is proposed to regulate the mixed working fluid outlet temperature of both evaporators, ensuring efficient and safe ORC system operation. The NMPC is designed using a reduced order control model of the moving boundary heat exchanger system. In the NMPC formulation, the temperature difference between evaporator outlets is penalized so that the mixed temperature can be controlled smoothly without exceeding maximum or minimum working fluid temperature limits in either evaporator. The NMPC performance is demonstrated in simulation over an experimentally validated, high fidelity, physics based ORC plant model. NMPC performance is further validated through comparison with a classical PID control for selected high load and low load engine operating conditions. Compared to PID control, NMPC provides significantly improved performance in terms of control response time, overshoot, and temperature regulation.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In