0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Hysteresis of a Thermoplastic Polyurethane Using Coarse-Grained Molecular Dynamics

[+] Author Affiliations
Md Salah Uddin, Jaehyung Ju

University of North Texas, Denton, TX

Paper No. IMECE2016-65903, pp. V009T12A080; 10 pages
doi:10.1115/IMECE2016-65903
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME

abstract

We predict hysteresis of a thermoplastic polyurethane (TPU) varying the configurations and weight % of hard segments from 34.90% to 62.30% using coarse-grained molecular dynamics (CGMD) simulations. Rate-dependent stress-strain responses of the molecular models are justified between energy equivalence constitutive modeling and atomic viral stresses. Uniaxial cyclic loading (tension/compression) of the coarse-grained (CG) models are performed using NPT ensembles (isothermal-isobaric) at the atmospheric condition to ensure no stresses in the other two directions except the loading directions. Engineering stresses are estimated from atomic viral stresses at different frequencies and up to various strain levels, whereas areas under the stress-strain curves give the hysteresis loss under cyclic deformations. We correlate the hysteresis losses of all of the models with their bulk moduli and Poisson’s ratios. By the end of the study, we may answer the following research questions: i) How much hysteresis loss increases due to increasing the weight% of hard segments from 34.90% to 62.30%? ii) How sensitive are the losses corresponding to strain amplitudes from 5% to 15% and frequencies from 1.67 × 1011 Hz to 5.0 × 1011 Hz? iii) In order to reduce the hysteresis loss, how much we have to compromise in bulk modulus and how much Poisson’s ratio will be increased corresponding to that compensation. This molecular simulation tool can be used to design new rubber materials with better mechanical properties and lower hysteresis losses without the trial and error based experimental work.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In