Full Content is available to subscribers

Subscribe/Learn More  >

Boundary Value Problems in the Theory of Thermoelasticity for Triple Porosity Materials

[+] Author Affiliations
Merab Svanadze

Ilia State University, Tbilisi, Georgia

Paper No. IMECE2016-65046, pp. V009T12A079; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME


This paper concerns with the quasi static linear theory of thermoelasticity for triple porosity materials. The system of governing equations based on the equilibrium equations, conservation of fluid mass, the constitutive equations, Darcy’s law for materials with triple porosity and Fourier’s law of heat conduction. The cross-coupled terms are included in the equations of conservation of mass for the fluids of the three levels of porosity (macro-, meso- and micropores) and in the Darcy’s law for materials with triple porosity. The system of general governing equations is expressed in terms of the displacement vector field, the pressures in the three pore systems and the temperature. The basic internal and external boundary value problems (BVPs) are formulated and on the basis of Green’s identities the uniqueness theorems for the regular (classical) solutions of the BVPs are proved. The surface (single-layer and double-layer) and volume potentials are constructed and their basic properties are established. Finally, the existence theorems for classical solutions of the BVPs are proved by means of the potential method and the theory of singular integral equations.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In