Full Content is available to subscribers

Subscribe/Learn More  >

Processing of Biodegradable Polymer Composite Using Soy Protein-Based Resin and Nanoclay

[+] Author Affiliations
Mohammad K. Hossain, Samira N. Shaily, Hadiya J. Harrigan, Terrie Mickens

Tuskegee University, Tuskegee, AL

Paper No. IMECE2016-67809, pp. V009T12A069; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME


A completely biodegradable composite was fabricated from an herbal polymer, soy protein concentrate (SPC) resin. Soy protein was modified by adding 30 wt% of glycerol and 5 wt% of poly vinyl alcohol (PVA) to enhance its mechanical as well as thermal property. 3%, 5%, 10%, and 20% nanoclay (NC) were infused into the system. To evaluate its mechanical properties, crystallinity, thermal properties, bonding interaction, and morphological evaluation, tensile, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) tests, and optical microscopy (OM) and scanning electron microscopy (SEM) evaluation were performed. Tensile tests showed that the addition of nanoclay improved the mechanical properties of the modified resin. Soy protein is hydrophilic due to the presence of amino acids that contain various polar groups such as amine, carboxyl, and hydroxyl. As a result, polar nanoclay particles that are exfoliated can be evenly dispersed in the SPC resin. From experimental results, it is clear that adding of nanoclay with SPC resin significantly increased the stiffness of the SPC resin. A combination of 5% clay, 30% glycerol, and 5% PVA with the modified SPC resulted in the maximum stress of 18 MPa and Young modulus of 958 MPa. The modified SPC showed a reduced failure strain as well. X-ray diffraction curves showed an improvement of crystallinity of the prepared resin with increasing amount of nanoclay. Interaction among soy, glycerol, PVA, and nanoclay was clearly demonstrated from the FTIR analysis. Optical microscopy (OM) and scanning electron microscopy (SEM) micrographs revealed rougher surface in the nanoclay infused SPC samples compared to that of the neat one. SEM evaluation revealed rougher fracture surface in the NC infused samples.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In