0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Functionally Graded Cellular Core on Energy Absorption Response of Thin Walled Composite Axial Members

[+] Author Affiliations
Muhammad Ali, Khairul Alam, Eboreime Ohioma

Ohio University, Athens, OH

Paper No. IMECE2016-66150, pp. V009T12A058; 5 pages
doi:10.1115/IMECE2016-66150
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME

abstract

Thin walled axial members are typically used in vehicles’ side and front chassis to improve crashworthiness. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of presence of functionally graded cellular structures in thin walled members. A functionally graded aluminum cellular core in compact form was placed inside a steel square tube. The crushing behavior was modeled using ABAQUS/Explicit module. The variables affecting the energy absorbing characteristics, for example, deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were studied. An approximate 35% increase in the energy absorption capacity of steel tube was observed by adding aluminum graded cellular structure to the square tube. The aluminum graded structure crushed systematically in a layered manner and its presence as core supported the steel square tube side walls in transverse direction and postponed the local (tube) wall collapse. This resulted in composite tube undergoing larger localized folds as compared to highly compact localized folds, which appeared in the steel tube without any graded core. The variation in deformation mode resulted in increased stiffness of the composite structure, and therefore, high energy absorption by the structure. Further, a relatively constant crushing force was observed in the composite tube promoting lower impulse. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In