0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Load Carrying Capacity of Three and Four Lobed Polygonal Shaft and Hub Connection for Constant Grinding Diameter

[+] Author Affiliations
Ravi Bhatta, Wendy Reffeor

Grand Valley State University, Grand Rapids, MI

Paper No. IMECE2016-65745, pp. V009T12A010; 7 pages
doi:10.1115/IMECE2016-65745
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME

abstract

Polygonal shafts are used in power transmission as alternatives to keyed and splined shafts. They are designed using DIN standards. This research explores the loading strength of the standardized three lobed (P3G) and four lobed (P4C) polygonal shafts and hubs manufactured from the same stock size, subjected to torsional bending load at various fits. Due to complex conformal contact (nonlinear model) between the shaft and the hub, there is no analytical solution and, therefore, Finite Element Method had been used to determine the stresses, after validating experimentally and using the DIN standard. From the analysis, it was found that the hub experienced greater stress than the shaft in all cases and the major stress in a polygonal shaft and hub connection is the contact stress. The clearance fit was found to be the most detrimental fit and the interference fit to be the most suitable for larger power transmission. Owing to its small normal axial stress and hub displacement, the P4C clearance fit has its use in low power transmission where a sliding fit is a requirement. The maximum von Mises stress was located below the surface for P4C and P3G clearance fit, suggesting failure from pitting and fretting on these shafts. All of the stresses were found to be higher in P4C than P3G for similar loading. Therefore, for general use, the P3G profile with an interference fit is recommended.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In