0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites

[+] Author Affiliations
Paul V. Cavallaro, Andrew Hulton

Naval Undersea Warfare Center Division Newport, Newport, RI

Mahmoud Salama

JPS Composite Materials Corp., Anderson, SC

Melvin W. Jee

U.S. Army Natick Soldier Research, Development & Engineering Center, Natick, MA

Paper No. IMECE2016-65646, pp. V009T12A008; 12 pages
doi:10.1115/IMECE2016-65646
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME

abstract

This research investigated the fracture toughness and crack propagation behaviors of woven fabric reinforced polymer (WFRP) composite laminates subjected to single and mixed mode loadings using numerical models. The objectives were to characterize the fracture behaviors and toughness properties at the fiber/matrix interfaces and to identify mechanisms that can be exploited for increasing delamination resistance. The mode-I and mode-II strain energy release rates GI and GII, the effective critical strain energy release rate, Gc_eff, (also known as the mixed mode fracture toughness) and crack growth stabilities were determined as functions of crimped fiber paths using meso-scale, 2D multi-continuum finite element models. Three variations of a plain-woven fabric architecture were considered; each having different crimped fiber paths. The presence of mixed-mode strain energy release rates at the meso-scale due to the curvilinear fiber paths was shown to influence the interlaminar fracture toughness and was explored for pure single-mode and mixed-mode global loadings. It was concluded that woven fabric composites provided a Fracture Toughness Conversion Mechanism (FTCM) and their toughness properties were dependent upon and varied with positon along the crimped fiber paths. The FTCM was identified as an advanced tailoring mechanism that can be further utilized to improve toughness and damage tolerance thresholds especially when the mode-II fracture toughness GIIc is greater than the mode-I fracture toughness GIc.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In